COURSE NAME : DIPLOMA IN MECHANICAL AND PRODUCTION

ENGINEERING/PRODUCTION TECHNOLOGY

COURSE CODE : ME/PT/PG/MH/MI

SEMESTER : FIFTH FOR ME/PG/PT AND SIXTH FOR MH/MI

SUBJECT TITLE : MEASUREMENTS AND CONTROL

SUBJECT CODE:

Teaching and Examination Scheme

Teaching Scheme				F	Examinati	on Schem	e	
TH	TU	PR	PAPER HRS	TH	PR	0R	TW	TOTAL
03		02	03	100			25@	125

@-Internal assessment TH-Theory PR- practical TW-Term work

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:

The art of measurement plays an important role in all branches of engineering. With advances in technology, measurement techniques have also taken rapid strides, with many types of instrumentation devices, innovations, refinements. The course aims at making a Mechanical Engineering student familiar with the principles of instrumentation, transducers & measurement of non electrical parameters like temperature, pressure, flow, speed, force and stress and methods of control systems for engineering applications.

Objectives:

Student will be able to:

- 1. Understand the principle of operation of an instrument.
- 2. Appreciate the concept of calibration of an instrument.
- 3. Select Suitable measuring device for a particular application.
- 4. Identify different types of errors.

Learning Structure:

Measure various parameters/quantities associated with the practical situations by selecting proper & Application instruments and take corrective actions for deviations Analyze, select & use various measuring systems & instruments for measurement of temperature, pressure, Procedures flow, displacement, force, sound, humidity etc. in practical situation. Pascal's law, Flow measurement, Law of Elasticity, Hooke's law, Equilibrium of forces, Seebeck effect, Principles Laws of sound, Mechanical lever principle, Electromagnetic induction, Eddy current Force, pressure, Flow, temperature, power, speed, torque, resistance, inductance Magnetic flux, humidity, Concepts Liquid levels, stress, conductance, capacitance Gauges, Turbine meters, Anemometer, Thermometers, Thermistor, Flow meter, Thermocouple, Pyrometer, Facts LVDT, RVDT, Dynamometers, Tachometers, Hygrometers, Probes, Microphones Etc.

Contents: Theory

Topic and content	Hours	Marks
1: Introduction and significance of Measurement Specific objectives- The students will be able to understand ➤ Terminology related to measurement ➤ Various types of errors ➤ Concept of transducers Contents: 1.1 Types of measurement, classification of instruments Static terms and characteristics- Range and Span, Accuracy and Precision, Reliability, Calibration, Hysteresis and Dead zone, Drift, Sensitivity, Threshold and Resolution, Repeatability and Reproducibility, Linearity. 1.2 Dynamic characteristics- Speed of response, Fidelity and Dynamic errors, Overshoot. 06 marks 1.3 Measurement of error- Classification of errors, environmental errors, signal transmission errors, observation errors, operational errors. 04 marks 1.4 Transducers: Classification of transducers, active and passive, resistive, inductive, capacitive, piezo-resistive, thermo resistive 08 marks	08	18
2: Displacement and Pressure measurement Specific objectives- The students will be able to Explain working of displacement transducers Explain construction and working of low pressure and high pressure measuring instruments. Contents: 2.1 Displacement Measurement Capacitive transducer, Potentiometer, LVDT, RVDT, Specification, selection & application of displacement transducer. Optical measurement scale and encoders 2.2Pressure Measurement Low pressure gauges- McLeod Gauge, Thermal conductivity gauge, Ionization gauge, Thermacouple vacuum gauge, Pirani gauge. High Pressure gauge-Diaphragm, Bellows, Bourdon tube, Electrical resistance type, Photoelectric pressure transducers, piezoelectric type, Variable capacitor type	10	18
3: Temperature measurement 16 Marks Specific objectives- The students will be able to	06	16

 Explain electrical and non electrical methods of temperature measurements Describe high temperature measuring instruments such as pyrometers Content: 3.1 Non-electrical methods- Bimetal , Liquid in glass thermometer and Pressure thermometer 04 Marks 3.2 Electrical methods- RTD, Platinum resistance thermometer, Thermistor, Thermoelectric methods - elements of thermocouple, Seebek series, law of intermediate temperature, law of intermediate metals, thermo emf measurement. 08 Marks 3.3 Pyrometers- radiation and optical 04 Marks 		
4 :Flow measurements 12 Marks		
 Specific objectives- The students will be able to Describe variable area, variable velocity flow meters Special flow meters-electro-magnetic and ultrasonic flow meter Content: 4.1Variable area meter-Rota meter, Variable velocity meter-Anemometer 06 Marks 4.2 Special flow meter- Hot wire anemometer, Electromagnetic flow meter, Ultrasonic flow meter ,Turbine meter ,Vortex shedding flow meter 06 Marks 	06	12
5 :Miscellaneous Measurement 16 Marks		
 Specific objectives- The students will be able to Explain characteristic of sound and Measurement of sound intensity Measure shaft power Describe contact and non contact type of speed measuring instruments Explain working of strain gauges Content: 5.1 Introduction to sound measurement and study of Electro dynamic microphone and Carbon microphone. 5.2 Humidity measurement – Hair hygrometer, Sling psychrometer, 	08	16
 5.3 Liquid level measurement – direct and indirect methods. 5.4 Force & Shaft power measurement -Tool Dynamometer (Mechanical Type), Eddy Current Dynamometer, Strain Gauge Transmission Dynamometer. 5.5 Speed measurement -Eddy current generation type 		

tachometer, incremental and absolute type, Mechanical Tachometers, Revolution counter & timer, Slipping Clutch Tachometer, Electrical Tachometers, Contact less Electrical tachometer, Inductive Pick Up, Capacitive Pick Up, Stroboscope 5.6 Strain Measurement-Stress-strain relation, types of strain gauges, strain gauge materials, resistance strain gaugebonded and unbounded, types(foil, semiconductor, wire wound gauges), selection and installation of strain gauges load cells, rosettes.		
6 : Control systems Specific objectives- The students will be able to ➤ Know various types of control systems and their comparison ➤ State field applications of control systems Contents: 6.1 Block diagram of automatic control system, closed loop system, open loop system, feed back control system, feed forward control system, servomotor mechanism, 06 marks 6.2 Comparison of hydraulic, pneumatic, electronic control systems, 06 marks 6.3 Control action: Proportional, Integral, derivative, PI,PD, PID 04 marks 6.4 Applications of measurements and control for setup for boilers, air conditioners, motor speed control 04 marks	10	20

Note-i) Simple numerical on chapter 1,4,5

ii) No numerical on chapter 2,3,6

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Analyze the result of calibration of thermister
- 2. Interpret calibration curve of a rotameter
- 3. Evaluate the stress induced in a strain gauge
- 4. Verify the characteristics of photo transister and photo diode

Motor Skills:

- 1. Test and calibration of a thermocouple
- 2. Handle various instruments
- 3. Draw the calibration curves of rotameter and thermister
- 4. Measure various parameters using instruments

List of Practical:

- 1 Understand the methods of measurements and instrument characteristics with illustration
- 2 Displacement measurement by inductive transducer.(LVDT)
- 3 Measurement of negative pressure using McLeod gauge / Bourdon tube pressure gauge
- 4 Measurement of temperature by using Thermocouple.
- 5 Measurement of flow by using rotameter.
- 6 Measurement of strain by using a basic strain gauge and hence verify the stress induced.
- 7 Speed Measurement by using Stroboscope / Magnetic / Inductive Pick Up.
- 8 Measurement of force & weight by using a load cell.
- 9 Liquid Level Measurement by using Capacitive Transducer system.
- 10 Study of control system with one suitable application (boiler) arranging industrial visit at sugar factory / paper mill / textiles / food processing industry.
- 11 Mini project-A group of 4 students shall take a mini project of searching information about advanced instrumentation / control system using internet and submits its report.

Learning Resources:

Books:

Sr. No.	Author	Title	Publication	
01	D.S.Kumar	Mechanical Measurements & Control	Metropolitan Publications, New Delhi	
02	R.K.Jain	Mechanical & Industrial Measurements	Khanna Publications, New Delhi	
03	A.K.Sawhney	Mechanical Measurements & Instrumentation	Dhanpat Rai & Sons, New Delhi.	
04	E. O. Doebelin	Measurement Systems	Tata McGraw Hill Publications	
05	R.V. Jalgaonkar	Mechanical Measurement & Control	Everest Publishing House, Pune	
06	C.S. Narang	Instrumentation Devices & Systems	Tata McGraw Hill Publications	
07	B.C.Nakra and K.K.Chaudhary	Instrumentation, Measurement and Analysis	Tata Mc Graw Hill Publication	
08	Thomas Beckwith	Mechanical Measurement	Pearson Education	
09	James W Dally	Instrumentation for Engg. Measurement	Wiley India	

Curriculum revision project 2012 LIST OF EQUIPMENTAND MACHINERY

(Essential equipment/hand tools required for conducting practical's)

- Name of course/Department:-Mech. Engg. Dept.
 Name of laboratory: Measurement and control lab.

Sr.	Name of Equipment.	Technical Technical	Minimum	Remark if
No.		Specifications	Qty./No's	any
			.required	
1	Displacement	Inductive sensor with		
	measurement using	micrometer head for		
	inductive	displacement		
	transducer(LVDT)	measurement		
2	McLeod gauge with	McLeod gauge		
	high vacuum pump	With arrangement for		
	/Bourdon tube trainer	high vacuum pump		
3	Temperature	Thermocouple		
	measurement using	assembly with heating		
	Thermocouple	arrangement		
		Display 3.5 digital		
		display		
4	Flow measurement	Rotameter trainer with		
	using Rotameter	motor pump tank with		
		water recycling		
		arrangement		
5	Strain gauge	Sensor- 4 arm bridge		
	trainer(strain / force	with strain gauge		
	measurement)	mounted on canti-lever		
		capacity – 2 kg.		
		Display- 3.5 digital		
		display		
6	Stroboscope	Range upto 5000 RPM		
		Display –LED digital		
7	Inductive pick up for	Sensor – inductive		
	speed measurement	Variable speed motor		
		arrangement 3.5 digital		
		display		
8	Loadcell	Sensor- 4 arm bridge		
		with strain gauge		
		capacity – 2 kg.		
		Display- 3.5 digital		
		display		
9	Liquid level	Sensor –capacitive type		
	measurement using	with glass jar fitted		
	capacitive system	with water tank 3.5		
		digital display		